
IBN Scientists Develop Green Technique to Transform
Carbon Dioxide into Useful Compounds
New research breakthrough targets pharmaceuticals and chemicals industries
Singapore, November 9, 2010 – Scientists at the Institute of Bioengineering and Nanotechnology (IBN), the world’s first bioengineering and nanotechnology research institute, have reported another breakthrough in their quest to develop green technologies for pharmaceuticals synthesis. They have devised a new environmentally friendly technique to transform carbon dioxide, an abundant and renewable carbon source, into highly functionalized propiolic acids, which are basic building blocks for the synthesis of a wide range of pharmaceuticals such as cholesterol-reducing drugs and peptidomimetic and other small molecule inhibitors that may be used, for example, to kill cancer cells.
Over the past few decades, there has been much global attention on the chemical fixation and transformation of carbon dioxide into more useful compounds or chemicals. As an environmentally friendly chemical reagent, carbon dioxide is highly sought after in organic synthesis, and significant efforts have been devoted towards exploring technologies for its transformation. However, the harsh and severe reaction conditions required for most current protocols, along with their poor catalytic performance and limited substrate scope, pose major obstacles for their practical application and eventual commercialization.
IBN’s approach involves the direct activation of the C–H bond and carboxylation of the terminal alkynes using a novel copper and copper–N-heterocyclic carbene catalyst that the researchers developed specifically for this reaction. Excellent yields of propiolic acid were obtained from carbon dioxide under ambient reaction conditions without the use of any organometallic reagents. IBN’s elegant and economically viable protocol has great potential for real-world applications, as it is also flexible enough to be used with a wide variety of substrates. Moving forward, the IBN researchers hope to further develop this technology for the large-scale synthesis of industrial chemicals from carbon dioxide.
“Our research is focused on converting sustainable resources such as carbon dioxide into useful pharmaceuticals through environmentally benign processes,” shares IBN Team Leader and Principal Research Scientist Dr Yugen Zhang, who led this research effort. “Ever since the American Chemical Society and Green Chemistry Institute Pharmaceutical Roundtable initiative was launched in 2005 to encourage innovation and integration of green chemistry and green engineering into drug discovery, development and production, more pharmaceutical companies have made the commitment to bring medicines to patients with minimal impact on the environment. We aim to provide them with new and powerful tools that will help them to achieve this goal, while saving their manufacturing costs.”
According to Professor Jackie Y. Ying, IBN Executive Director, “The vision of our green synthesis platform is to develop inexpensive and safe pharmaceuticals and specialty chemicals. This breakthrough marks a significant advancement in sustainable technologies of interest to the pharmaceuticals and fine chemicals industries. It helps to position IBN and Singapore at the forefront of green chemistry research.”
This research is reported in the latest edition of the Proceedings of the National Academy of Sciences [D. Yu and Y. Zhang, “Copper and Copper–NHC Catalyzed C–H Activating Carboxylation of Terminal Alkynes with CO2 at Ambient Conditions,” Proceedings of the National Academy of Sciences, (2010) DOI: 10.1073/pnas.1010962107.]. Dr Zhang’s team at IBN has also been responsible for several other recent breakthroughs in carbon dioxide transformation (see references below).
Image Available on Request:
References:
1. S. N. Riduan, Y. Zhang and J. Y. Ying, “Conversion of Carbon Dioxide to Methanol with Silanes over N-Heterocyclic Carbene Catalysts,” Angewandte Chemie International Edition, 48 (2009) 3322-3325.
2. L. Gu and Y. Zhang, “Unexpected CO2 Splitting Reactions to Form CO with N-Heterocyclic Carbenes as Organocatalysts and Aromatic Aldehydes as Oxygen Acceptors”, Journal of the American Chemical Society, 132 (2010) 914-915.
3. S. N. Riduan and Y. Zhang, “Recent Developments in Carbon Dioxide Utilization Under Mild Conditions”, Dalton Transactions, 39 (2010) 3347-3357.
4. Y. Zhang and J. Y. G. Chan, “Sustainable Chemistry: Imidazolium Salts in Biomass Conversion and CO2 Fixation”, Energy Environmental Science, 3 (2010) 408-417.
For interviews, queries and photo requests, please contact:
Elena Tan
Phone: 65 6824 7032
Email: elenatan@ibn.a-star.edu.sg Email: nidyah@ibn.a-star.edu.sg
Nidyah Sani
Phone: 65 6824 7005
Email: nidyah@ibn.a-star.edu.sg
About the Institute of Bioengineering and Nanotechnology
The Institute of Bioengineering and Nanotechnology (IBN) was established in 2003 and is spearheaded by its Executive Director, Professor Jackie Yi-Ru Ying, who has been on the Massachusetts Institute of Technology’s Chemical Engineering faculty since 1992, and was among the youngest to be promoted to Professor in 2001.
In 2008, Professor Ying was recognized as one of “One Hundred Engineers of the Modern Era” by the American Institute of Chemical Engineers for her groundbreaking work on nanostructured systems, nanoporous materials and host matrices for quantum dots and wires.
Under her direction, IBN conducts research at the cutting-edge of bioengineering and nanotechnology. Its programs are geared towards linking multiple disciplines across all fields in engineering, science and medicine to produce research breakthroughs that will improve healthcare and our quality of life.
IBN’s research activities are focused in the following areas:
• Drug and Gene Delivery, where the controlled release of therapeutics involve the use of functionalized polymers, hydrogels and biologics for targeting diseased cells and organs, and for responding to specific biological stimuli.
• Cell and Tissue Engineering, where biomimicking materials, stem cell technology, microfluidic systems and bioimaging tools are combined to develop novel approaches to regenerative medicine and artificial organs.
• Biosensors and Biodevices, which involve nanotechnology and microfabricated platforms for high-throughput biomarker and drug screening, automated biologics synthesis, and rapid disease diagnosis.
• Pharmaceuticals Synthesis and Green Chemistry, which encompasses the efficient catalytic synthesis of chiral pharmaceuticals, and new nanocomposite materials for sustainable technology and alternative energy generation.
IBN's innovative research is aimed at creating new knowledge and intellectual properties in the emerging fields of bioengineering and nanotechnology to attract top-notch researchers and business partners to Singapore. Since 2003, IBN researchers have published over 619 papers in leading journals.
IBN also plays an active role in technology transfer and spinning off companies, linking the research institute and industrial partners to other global institutions. The Institute has filed over 1,099 patent applications on its inventions and is currently looking for partners for collaboration and commercialization of its portfolio of technologies.
IBN's current staff strength stands at over 180 scientists, engineers and medical doctors. With its multinational and multidisciplinary research staff, the institute is geared towards generating new biomaterials, devices, systems, equipment and processes to boost Singapore’s economy in the fast-growing biomedical sector.
IBN is also committed to nurturing young minds, and the institute acts as a training ground for PhD students and undergraduates. In October 2003, IBN initiated a Youth Research Program to open its doors to university students, as well as students and teachers from various secondary schools and junior colleges. It has since reached out to more than 41,959 students and teachers from 235 local and overseas schools and institutions.
For more information, please log on to: www.ibn.a-star.edu.sg.